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Abstract

Purpose: This research seeks to answer the basic question, “What would be the
most determining factors if I perform regression analysis using several independent
variables?” This paper suggests the way to estimate the proper royalty rate and up-front
payment using multiple data I can get simply as input.

Design/methodology/approach: This research analyzes the dataset, including the
royalty-related data like running royalty rate (back-end payments) and up-front
payment (up-front fee +milestones), regarding drug candidates for specific drug class
of anticancer by regression analysis. Then, the formula to predict royalty-related data is
derived using the attrition rate for the corresponding development phase of the drug
candidate for the license deal, TCT (Technology Cycle Time) median value for the IPC
code (IP) of the IP, Market size of the technology, CAGR (Compound Annual Growth
Rate) of the corresponding market and the revenue data of the license buyer (licensee).

Findings: For the anticancer (antineoplastics) drug classes, the formula to predict the
royalty rate and up-front payment is as follows.
<Drug Class: Anticancer activity candidates>

Royalty Rate ¼ 9:997 þ 0:063 � Attrition Rate þ 1:655
� Licensee Revenue ‐ 0:410 � TCT Median

‐1:090 � Market Size ‐ 0:230 � CAGR Formula 1ð Þ
Up‐Front Payment Up‐front þ Milestonesð Þ ¼ 2:909 ‐ 0:006 � Attrition Rate þ 0:306 �
Licensee Revenue ‐ 0:74 � TCT Median ‐ 0:113 � Market Size ‐ 0:009 � CAGR Formula 2ð Þ

In the case of Equations Equation 1 to estimate the royalty rate, it is statistically
meaningful at the significance level of 1 % (P-Value: 0.001); however, in the case of
Equations Equation 2 to estimate the up-front payment it is statistically not meaningful
(P-Value: 0.288), thus requiring further study.
(Continued on next page)
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Research limitations/implications (if applicable): This research is limited to the
relationship between multiple input variables and royalty-related data in one drug class
of anticancer (antineoplastics).

Practical implications (if applicable): Valuation for the drug candidate within a
specific drug class can be possible, and the royalty rate can be a variable according to
drug class and licensee revenue.

Keywords: Valuation, Licensing deal, Drug, Royalty data, Royalty rate, Up-front fee, Up-
front Payment, Milestones, Regression, Drug class, Anticancer, Antineoplastics, Attrition
rate, Development phase, Licensee, Life sciences, rNPV, eNPV (expected NPV), DCF,
Multivariable analysis, IPC code, TCT median value, Market Size, CAGR, IP, Revenue,
Multiple input descriptor, Significance level, P-Value, Prediction

Introduction
R&D productivity in life sciences and “fail fast, fail cheaply” strategy

Drug development requires a great amount of time and money for each development

phase. So drug development is expensive, time-consuming, complex, and risky (Lee et

al. 2016). The global life sciences sector’s general decline in R&D productivity is a fre-

quent topic of conversation among industry stakeholders, investors, and analysts. Total

projected value of late-stage pipelines for the 12 largest pharmaceutical companies

showed a decline from $1,369 billion to $913 billion in 2013. The global life sciences

sector in R&D productivity is generally declining. As the drug development costs and

duration is bigger if the development phase is late phase, dropping the dug project in

the early stage is cheaper. While there has been a decline in drug pipeline volumes and

success rates in early-phase drug development, the number of stopped Phase III pro-

jects has also reduced gradually and the submission phase has posted a stable success

rate. This is “fail fast, fail cheaply” strategy (Deloitte Centre for Health Solutions, 2015).

As shown in Fig. 1, New drug and biologic approvals are not keeping pace with rising

R&D costs (Kaitin, 2015). R&D expenditures are constantly increasing, and the service

enterprise is aiming to improve product development and the production process by

increasing both internal and external R&D activities (Kim, 2016).

Fig. 1 New drug and biologics approvals and R&D spending (DiMasi et al. 2016)
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Licensing as good strategy

Medtech R&D spend is projected to grow by 4.2 % annually, to $30.5 billion by 2020

and Life sciences R&D spending is projected to grow 2.4 % per year from 2013 to 2020,

reaching $162 billion. Some smaller biotech firms with limited R&D budgets are secur-

ing financial support from large pharmaceutical companies through licensing and col-

laborative R&D deals (Deloitte Centre for Health Solutions, 2015). With the recent

collapse in the general and biotech equity issuance and IPO markets, biotech compan-

ies will have to turn more to partnering, licensing and M&A for funding. Linkages of a

firm can take in the form of a joint research project, joint development of a product,

personnel exchanges, joint patenting, technology licensing, equipment purchase, and

also a variety of other channels (Young, 2016; Patra & Krishna, 2015). Licensing is a

good strategy and business model to overcome financial difficulties due to long devel-

opment period in life science. In many cases, purchasing a biotech firm is a more

attractive option than buying the rights to the drugs the firm develops. Such a transac-

tion can be a win for biotech firms, too, because large pharma companies typically pos-

sess the manufacturing facilities needed to commercialize drugs, which biotechs often

lack. As shown in Fig. 2, Life sciences companies tallied over $300 billion in completed

or announced M&A transactions globally for 2014 (Deloitte Centre for Health Solu-

tions, 2015). Figure 3 illustrates the scale of licensing activity within the pharmaceutical

industry in the last decade. More than 1,000 product deals (most of them licensing

deals) were recorded each year in the PharmaDeals® v4 Agreements database since

2002 (Nigel Borshell & Ahmed 2012).

Demanding valuation in the licensing deal in the life sciences sector

Pharmaceutical companies need to make up for their R&D deficiencies with licensing

activities. As soon as it comes to licensing and M&A, companies are in urgent need of

a valuation method that displays the correct value of early stage projects.

There are two major quantitative valuation approaches applied in the life sciences

sector, DCF and real options. But even experienced licensing staff writhes to attribute

the right value to a complex license contract and so the valuation is demanding. Com-

pared to other industries, valuation in life sciences is more demanding due to the inher-

ent complexity and length of R&D. Main concerns are the choice of the right valuation

Fig. 2 Global life sciences M&A (Deloitte Centre for Health Solutions, 2015)
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method, the methodology itself, the input parameters and the interpretation of the re-

sults (Bogdan & Villiger, 2010).

In reviewing the preceding research, there have been no cases where a regression

analysis could be performed to estimate the proper royalty rate and up-front payment

using the formula derived from the regression of the dataset of historical licensing data

(Lee et al. 2016). This study suggests the way to estimate the proper royalty rate and

up-front payment using multiple data descriptor we can get easily as input and can be

used as a simple tool to answer the basic question, “What would be the most determin-

ing factors if I perform regression analysis using several independent variables?”

Review of preceding research

Lee et al. (2016)’s study was believed to be the first case to estimate the royalty rate and

up-front payment using the formula derived from the regression of the dataset of his-

torical licensing data, but further in-depth research is necessary for investigating the re-

lationship between royalty-related data and more input descriptors such as market size,

molecular and IP, Market size, licensee revenue, molecular structure, and IP can be

converted to numerical value and can be used for the input for prediction (Lee et al.

2016) Fig. 4.

The value of technology depends on a large number of factors. As shown in Fig. 5,

these include the target market size for the final therapeutic product, the anticipated

clinical qualities of the drug and the extent of competition for the drug. These will in-

clude the phase specific success probabilities, development costs and timelines, the ex-

pected market size and market share, and the costs of goods, marketing and

Fig. 3 Total licensing activity in the pharmaceutical industry for 10 years (Nigel Borshell & Ahmed 2012)

Fig. 4 The summary of estimation the royalty rate and up-front payment using the formula derived from
the regression of the dataset of historical licensing data (Lee et al. 2016)
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administration. Add to these the scenarios of product life cycle and commercial per-

formance based on predicted ethical and/or generic competition and the task of calcu-

lating the value appears almost impossible (Nigel Borshell & Ahmed 2012).

The most complex method conceptually to valuate is Monte Carlo simulation.

Instead of putting in single point estimates of all the inputs to calculate a single value

in a model, the Monte Carlo methodology puts in probability distributions for various

inputs such as market size, costs, pricing and time to market, and then samples all

those distributions to run multiple simulations, each calculating an NPV as shown in

Fig. 6 (Pullan, 2014).

There was no perfect correlation between the market sizes of certain therapeutic

areas and the market caps of early stage technology companies in the life sciences sec-

tor. According to Table 1, valuation of a given stem cell therapy company addressing

Fig. 5 Integrated valuation methods (Nigel Borshell & Ahmed 2012)

Fig. 6 Random points within a square to calculate pi

Lee et al. Journal of Open Innovation: Technology, Market, and Complexity  (2016) 2:21 Page 5 of 22



diabetes appears to be very low. This could be due to conservative assumptions; a mar-

ket premium for track record and proven capability of the listed companies; key collab-

orative alliances; and positive news during the product development stage. Given these

factors, valuation assumptions also depend on the purpose of the valuation and who is

represented in the exercise (Ranade, 2008).

Patents and patent valuation have raised tremendous concerns from the research-

based pharmaceutical industry for a long time. It is demonstrated that PTDI (Pharma-

ceutical technology details indicators) like NCE actually have significant influence on

patent value and, more significantly, enhance the quality of existing valuation methods.

NCE actually plays the role of the strongest positive factor influencing the expected pa-

tent value. On the contrary, OD(Orphan Drug) and PD(Pediatric Drug) show signifi-

cantly negative effects, which could be rationally explained by the small patient

population for these drugs (Hu et al. 2008) Table 2.

Table 1 Early-stage technology companies

Company Technology Disease area R&D status Market capitalization

StemCells Cell therapy Diabetes, Parkinson’s Preclinicals $55 million

Transition Therapeutics Biopharma Diabetes Phase I $78 million

Alteon Biopharma Diabetes, Aging Phase II, Preclinicals $69 million

Aradigm Medical devices Diabetes Phase II, III $134 million

Aastrom Biosciences Cell theraphy Oncology, Dermatology Phase I $83 million

Emisphere Technologies Medical devices Diabetes, Blood system Phase I, II, III $109 million

NeoPharm Biopharma Oncology Phase,I, II $476 million

ConjuChem Biopharma Deabetes, AIDS, CHF Phase II $589 million

Spectrum Pharma Biopharma Oncology, Neurology Preclinicals $79 million

Ergo Sciences Biopharma Diabetes Technology sold $15 million

Table 2 The expected effect on patent value according to pharmaceutical industry related factors

Variable Definition Expected effect on Patent value Date source

CRECEIVE Number of citations received + NBER

OPPOSITION The occurrence of opposition (1:yes; 0: no) + INPADOC

CLAIMS Number of claims + NBER

CMADE Number of citations mode + NBER

BLOCKBUSTER Blocbuster drug (1:yes; 0: no) + PHARMADL

PORTFOLIO Number of patents in a patent portfolio + FDA

NDS New dosing schedule (1:yes; 0: no) Unknown FDA

NI New indication (1:yes; 0: no) Unknown FDA

NC New combination (1:yes; 0: no) + FDA

NCE New chemical entity (1:yes; 0: no) + FDA

NDF New dosage form (1:yes; 0: no) + FDA

NP New product (1:yes; 0: no) + FDA

NS New strength (1:yes; 0: no) Unknown FDA

OD Orphan drug (1:yes; 0: no) - FDA

PD Pediatric drug (1:yes; 0: no) - FDA

GYEAR Grant year - NBER

NBER US National Bureau of Economic Research, INDAPOC International Patent Documentation Center, PHARMADL
Pharmaceutical Digital Library
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There was a simulation approach to value patents and patent-protected R&D projects

based on the Real Options approach and takes into account uncertainty in the cost to

completion of the project, uncertainty in the cash flows to be generated from the pro-

ject, and the possibility of catastrophic events that could put an end to the effort before

it is completed. Figure 7 shows the critical cash flows rates (critical costs) for costs be-

tween $80 and $100 million (cash flow rates between $9 and $18 million) (Schwartz,

2004). Since Eduardo Schwartz’s paper, patent valuation has increasingly attracted con-

siderable interest of researchers and practitioners. Nevertheless, few of the firms that

can benefit from patent valuation have the capability to perform in-house patent valu-

ation, and even the patent valuation expertise of consultancies and financial institutions

seems limited (Carte, 2005; Ernst et al. 2010).

Thus, at present, there are problems and challenging issues for the research on patent

valuation. First, among previous studies that provide the excellent overviews about the

determinants (indexes) of patent, it was shown that forward citations are significantly

correlated with a patent’s market value (Nair et al. 2012). Forward citations are defined

in Hu, Rousseau, & Chen’s study as the number of patent citations that an auctioned

patent received till the Ocean Tomo date of sale. However, measuring a patent’s market

value by simply counting the patent’s forward citations has limitation to reflect the

complexity in the networks of patents. Moreover, previous studies have shown that the

structural patent indicators of the patent citation networks (PCNs) are correlated with

patent value and the correlations are different among the groups of firms (Hu et al.

2012). PCNs are constructed by setting patents as nodes and their citation information

as edges. Nevertheless, few efforts have been made to investigate the effect of structural

patent indicators in forward citations on patent price. Second, it is difficult to investi-

gate dynamics between patent indicators and patent price because the actual price at

which the patent is sold or licensed is often a privately maintained record. To resolve

these problems and challenging issues, the paper proposed a systematic approach,

which investigates the effect of the structural patent indicators, extracted from forward

citations, on patent price from the relationship with firm market value. To explain, first,

the paper introduces the forward patent citation networks (FPCNs), from which the

structural patent indicators are extracted as a set of features to represent patent price.

Fig. 7 Critical values for investment

Lee et al. Journal of Open Innovation: Technology, Market, and Complexity  (2016) 2:21 Page 7 of 22



Thereafter, the panel data econometric approach is applied to examine the relationship

between the firm-level structural patent indicators and enterprise value (EV), selected

as firm market value. Finally, dynamics between the structural patent indicators in the

FPCNs and patent price are explored by referring to the discovered relationship (Suh,

2015) Fig. 8.

Research design and scope and limitation
Research design

This research analyzes the anticancer (antineoplastics) dataset, including the royalty-

related data like running royalty rate and up-front payment, regarding drug candidates

for specific drug class of anticancer, by regression analysis between royalty-related data

and multiple input descriptors like the attrition rate for the development phase, market

size, TCT median value for the IPC code (IP) of the patent, and the revenue data of the

license buyer for deriving the formula to predict royalty-related data.

According to the preceding research, the main factors to drive the size of licensing

deals in the life sciences area are development phase, drug class, contract type, contract

scope, licensee, molecular structure, market, strategies, competition, IP, and novelty

(Arnold et al. 2002). Market size, licensee revenue, molecular structure, and IP can be

converted to numerical value and can be used for the input for prediction for royalty-

related data such as running royalty rate (back-end payments) and up-front payment

(up-front fee +milestones). In the case of molecular structure, it requires professional

chemical software to convert chemical structure into numeric code and requires the

collection of molecular structure information for the drug candidate. This study se-

lected the attrition rate for the development phase, market size, CAGR, TCT median

Fig. 8 The research framework to study the effect of the structural patent indicators on patent price (Suh, 2015)

Lee et al. Journal of Open Innovation: Technology, Market, and Complexity  (2016) 2:21 Page 8 of 22



value for the IPC code (IP), and the revenue data of the license buyer as descriptors for

input x-axis of regression.

The main research procedure is divided into three steps as shown in Fig. 9: data

collection, Preparation of dataset, and regression analysis.

Step 1. Collection of data such as the running royalty rate, up-front fee, milestones, licensor,

licensee, the revenue of licensee, the corresponding drug subclass, IPC subclass, TCT median

value of the patent, market size, and CAGR of the drug subclass, and the development

phase in drug licensing deals

This study collected the data for one drug class of anticancer. Data collection is based

on the several resources described in our previous study (Lee et al. 2016). Additional

resources are: (1) Site for checking the revenue of Licensee: http://www.google.com/finance

and http://finance.yahoo.com/; (2) Site to retrieve the market size and CAGR of the corre-

sponding drug subclass: http://www.giikorea.co.kr/ (3) Site for checking the IPC subclass of

the patent: www.google.com/patents.

Step 2. Preparation of dataset ready for regression analysis

The procedure and examples of data normalization of up-front payment (up-front

fee + milestones) and back-end payment (running royalty rate) to prepare the dataset

ready for regression are described in our previous paper (Lee et al. 2016).

The procedure to get TCT median Value is divided into three steps as shown in

Fig. 10: Patent Navigation, Getting IPC Subclass from the patent, and Getting Technol-

ogy Cycle Time Median Value.

Figures 11 and 12 show the example to get IPC Subclass from the patent, and to get

TCT Median Value (Average) from IPC subclass.

The procedure to get Market size (2015) and CAGR (%) is divided into three steps as

shown in Fig. 13: Navigate market information, Convert the currency unit of the mar-

ket size to million dollar, and Estimate the market size of year 2015 by applying CAGR.

Figure 14 shows the example to get the market size of year 2015 and CAGR (%).

Step 3. Regression analysis to investigate the relationship between multiple independent

variables of the attrition rate for the development phase, market size, CAGR, TCT median

value for the IPC code (IP), and the revenue data of the license buyer and the dependent

variable of up-front payment (up-front fee +milestones) and the relationship between mul-

tiple independent variables of the attrition rate for the development phase, market size,

CAGR, TCT median value for the IPC code (IP), and the revenue data of the license buyer

and the dependent variable of back-end payment (running royalty rate)

Used software: IBM SPSSS Statistics Version 21

Fig. 9 Procedure and steps to carry out research
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Regression 1: X-axis = multiple independent variables of the attrition rate for the

development

phase, market size, CAGR, TCT median value for the IPC code (IP), and the revenue

data of the license buyer

Y-axis = up-front payment (up-front fee + milestones) [Unit: USD]

Regression 2: X-axis = multiple independent variables of the attrition rate for the

development

phase, market size, CAGR, TCT median value for the IPC code (IP), and the revenue

data of the license buyer

Y-axis = back-end payment (running royalty rate) [Unit: USD]

Fig. 10 Procedure and steps to get the TCT median value

Fig. 11 Procedure and steps to get the IPC subclass from the patent
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Scope and limitation of research

The scope of this research is to derive the formula to predict royalty-related data, such

as running royalty rate (back-end payments) and up-front payment (up-front fee +mile-

stones), using the attrition rate for the corresponding development phase of the drug can-

didate for the anticancer (antineoplastics) drug class and the revenue data of the license

buyer (licensee). Statistically speaking, this research derives the formula to predict royalty-

related data using multiple independent variables like the attrition rate for the development

phase, market size, CAGR, TCT median value for the IPC code (IP), and the revenue data

of the license buyer. Also, this research selected the attrition rate for the development

phase, market size, CAGR, TCT median value for the IPC code (IP), and the revenue data

of the license buyer as descriptors for the input for the X-axis of regression. This study is

limited to the relationship between one drug class of anticancer (antineoplastics) and

royalty-related data. For further studies, we will cover more detail the relationship for more

drug classes using multiple input descriptors and we will cover the comparison of the esti-

mation results between by using the prediction formula derived regression analysis Vs. by

using traditional valuation methods like e-NPV or Real Options.

Fig. 12 Example to get the TCT median value (average) from the IPC subclass

Fig. 13 Procedure and steps to get the market size (2015) and CAGR (%)
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Analysis of dataset
Analysis of anticancer (antineoplastics) dataset

Figures 15 and 16 show the analysis result of the drug subclass of Anticancer dataset.

As shown in Fig. 15, top 3 ranking in the frequency hit percent of drug subclass is as

follows: (1) Cancer Immunotherapies, Lung Cancer (2) Leukemia Therapeutics, Protein

Kinase Inhibitor Antineoplastics (3) Breast Cancer, Drug Delivery System, Hematologic

malignancies, Liver Cancer, Monoclonal Antibody Antineoplastics, Pancreatic Cancer.

Figure 17 shows the analysis result of IPC code in the corresponding patent in the li-

censing deal of anticancer drug dataset. As shown in Fig. 17, top 5 ranking in the fre-

quency hit percent of IPC Code is as follows: (1) PREPARATIONS FOR MEDICAL,

DENTAL, OR TOILET PURPOSES (A61K) (2) HETEROCYCLIC COMPOUNDS

(C07D) (3) SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS

Fig. 14 Example to get the market (2015) and CAGR (%)

Fig. 15 The analysis result of the drug subclass of anticancer dataset (table)
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Fig. 16 The analysis result of the drug subclass of anticancer dataset (graph)

Fig. 17 The analysis result of IPC code in the corresponding patent in the licensing deal
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OR MEDICINAL PREPARATIONS (A61P) (4) PEPTIDES (C07K) (5) MICRO-

ORGANISMS OR ENZYMES (C12N).

Figures 18 and 19 show the analysis of Market size of Anticancer Drug Subclass of

anticancer drug dataset. As shown in Fig. 18, top 5 market in the market size is as fol-

lows: (1) Drug Delivery System (2) Hematologic malignancies (3) Monoclonal Antibody

Antineoplastics (4) Ovarian Cancer (5) Peptide Therapeutics.

Figure 20 shows the analysis of Licensee (license buyer) Revenue of anticancer drug

dataset. The interesting point we found is small-medium companies occupied 66 % in

the licensee percent. The percent of small-medium companies to participate in the li-

censing deals is bigger than the one of the big companies.

Figure 21 shows the analysis of Development phase distribution of anticancer drug

dataset that reported in our previous paper (Lee et al. 2016). As show in Fig. 21, Phase

2-related stage deals occupied over 43 %.

Regression analysis
Regression analysis of anticancer (antineoplastics) dataset

We investigated the relationship between multiple independent variables of the attri-

tion rate for the development phase, market size, CAGR, TCT median value for the

IPC code (IP), and the revenue data of the license buyer and the dependent variable of

back-end payment (running royalty rate); its graph is as shown in Fig. 22, and its pre-

diction formula follows Eq. 1. We found that regression model is statistically meaning-

ful at the significance level of 1 % (P-Value: 0.001).

Fig. 18 The analysis result of market size of anticancer drug subclass (table)

Lee et al. Journal of Open Innovation: Technology, Market, and Complexity  (2016) 2:21 Page 14 of 22



Royalty Rate¼ 9:997 þ 0:063 � Attrition Rate þ 1:655 � Licensee Revenue‐0:410 �
TCT Median‐1:090 � Market Size‐0:230 � CAGR

ð1Þ

P-Value = 0.001

Independent Variables =multiple independent variables of the attrition rate for the

development phase, market size, CAGR, TCT median value for the IPC code (IP), and

the revenue data of the license buyer.

Fig. 19 The analysis result of market size of anticancer drug subclass (graph)

Fig. 20 The analysis result of licensee revenue distribution
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Dependent Variable = Royalty rates [Unit: USD] Fig. 23.

As shown in Fig. 24, Licensee Revenue is statistically meaningful and has significant

positive influence at the significance level of 5 %. The most significant variables affected

is Licensee Revenue, because Licensee Revenue has the biggest B-Value. Ranking of fac-

tors that influence the royalty rate is as follows: (1) Licensee Revenue (+) (2) Market

Fig. 21 The analysis result of development phase distribution

Fig. 22 Main regression analysis of the anticancer dataset by statistical software for Royalty rates
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Size (−) (3) TCT median value (−) (4) CAGR (−) (5) Attrition Rate (+). Plus (+) symbol

means positive influences and Negative (−) symbol means negative influences. CAGR is

statistically meaningful and has significant negative influence at the significance level of

1 %. Attrition Rate, TCT median value, Market Size are not significantly meaningful.

We investigated the relationship between multiple independent variables of the attri-

tion rate for the development phase, market size, CAGR, TCT median value for the

IPC code (IP), and the revenue data of the license buyer and the dependent variable of

back-end payment (running royalty rate); its graph is as shown in Fig. 25, and its pre-

diction formula follows Eq. 2. We found that the regression model is statistically not

meaningful (P-Value: 0.288), thus requiring further study.

Up‐Front Payment Up‐front þMilestonesð Þ ¼ 2:909‐0:006 � Attrition Rate þ 0:306s
� Licensee Revenue‐0:74 � TCT Median‐0:113 � Market Size‐0:009 � CAGR

ð2Þ

P-Value = 0.288

Independent Variables =multiple independent variables of the attrition rate for the

development phase, market size, CAGR, TCT median value for the IPC code (IP), and

the revenue data of the license buyer

Fig. 23 The summary of statistical characteristics of proposed regression model for estimating royalty rates

Fig. 24 Regression model summary for five independent variables for estimating royalty rates
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Dependent Variable = up-front payment (up-front fee +milestones) [Unit: USD]

Fig. 26

As shown in Fig. 27, Licensee Revenue is statistically meaningful and has significant

positive influence at the significance level of 5 %. The most significant variables affected

is Licensee Revenue, because Licensee Revenue has the biggest B-Value. Ranking of fac-

tors that influence the up-front payments is as follows: (1) Licensee Revenue (+) (2)

Market Size (−) (3) TCT median value (−) (4) CAGR (−) (5) Attrition Rate (−).Plus (+)
symbol means positive influences and Negative (−) symbol means negative influences.

However, the regression model is statistically not meaningful (P-Value: 0.288).

Fig. 25 Main regression analysis of the anticancer dataset by statistical software for upfront payments

Fig. 26 The summary of statistical characteristics of proposed regression model for estimating up-front payments
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Discussion
A regression analysis was carried out to estimate up-front payments and royalty rates

for one dataset of anticancer (antineoplastics) drug classes. In the case of the prediction

of Royalty rates, the models for predicting having a P-value of 0.001 for the anticancer

(antineoplastics) dataset was obtained through statistical analyses. In case of the predic-

tion of royalty rates, the models for predicting having a P-value of 0.288 for the anti-

cancer (antineoplastics) dataset was obtained through statistical analyses. Figure 28

shows the overview of the process of this study.

This study was presented with many limitations to reasonably determine the variables

for prediction because up-front payments and royalty rates are determined by highly

various environmental variables in the field. However, this study developed a prediction

model like Eq. 1 having a P-value of 0.001 for estimating royalty rates if multiple inde-

pendent variable like the attrition rate for the development phase, market size, CAGR,

TCT median value for the IPC code (IP), and the revenue data of the license buyer are

used. This is a “statistically significant” finding at the significance level of 1 % (P-Value:

0.001). Thus, the said variables can be used as the solid basis for evaluating royalty

rates in the future. Ranking of factors that influence the royalty rate is as follows: (1)

Licensee Revenue (+) (2) Market Size (−) (3) TCT median value (−) (4) CAGR (−) (5)
Attrition Rate (+). In the regression model to predict the royalty rate, Royalty Rate is in

direct proportion to Licensee Revenue and Attrition Rate and Royalty Rate is reverse

proportion to Market Size, TCT median value and CAGR.

Fig. 27 Regression model summary for five independent variables for estimating up-front payments

Fig. 28 Overview of the study’s process
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Royalty Rate = 9.997 + 0.063 * Attrition Rate + 1.655 * Licensee Revenue − 0.410 *

TCT Median − 1.090 * Market Size − 0.230 * CAGR (Eq. 1)

In the case of the prediction of up-front payments, this study developed a prediction model

like Eq. 2 having a P-value of 0.288 for estimating up-front payments if multiple independent

variable like the attrition rate for the development phase, market size, CAGR, TCT median

value for the IPC code (IP), and the revenue data of the license buyer are used. This is a

“statistically not meaningful” finding. Thus, the above prediction model for up-front payments

requires further study. Ranking of factors that influence the up-front payments is as follows:

(1) Licensee Revenue (+) (2) Market Size (−) (3) TCT median value (−) (4) CAGR (−) (5)
Attrition Rate (−). In the regression model to predict the up-front payment, Up-front

payments is in direct proportion to Licensee Revenue and Up-front payments is reverse

proportion to Market Size, TCT median value, CAGR and Attrition rate.

Up-front Payment (Up-front +Milestones) = 2.909 − 0.006 * Attrition Rate + 0.306

* Licensee Revenue − 0.74 * TCT Median − 0.113 * Market Size − 0.009 * CAGR (Eq. 2)

Conclusion
In royalty negotiations in the life sciences sector, a manager needs a simple tool to estimate

the proper royalty rate and up-front payment. Indeed, developing the right valuation methods

is very important for the pharmaceutical company, which wants licensing and M&A (Lee et

al. 2016). It is also the reason why many pharmaceutical companies keep their valuation

know-how secret. This exclusivity sometimes hinders brisk licensing and M&A activities.

Therefore, developing and sharing the right valuation methods cannot help one specific com-

pany’s licensing and M&A but can also help the development of licensing and M&A market

itself. It related to realizing the merit of the open innovation, which assumes that sharing

ideas can be advantageous for all players (Jeon et al. 2015; Leydesdorf & Ivanova, 2016;

Oganisjana, 2015; Yun et al. 2016). For this purpose, we proposed the valuation tools.

First, this study yielded meaningful results to predict the royalty rate by the regres-

sion analysis using multiple input descriptors. But in the case of the prediction of up-

front payments, it requires further study. This study provides the insight what would

be the most determining factors to get appropriate license fee among several multiple

factors like development phase, market size of subclass of a drug class, TCT median

value (Technology Cycle Time) of IP, and the revenue data of the license buyer which

can be expressed in numeric form.

Second, This study yielded meaningful results as it aimed to create a tool to predict

royalty rate using knowledge on the development phase and its attrition rate, drug

class, TCT median value (Technology Cycle Time) median value for the IPC code (IP)

of the IP, Market size of the technology, CAGR (Compound Annual Growth Rate) of

the corresponding market and licensee’s revenue, which can easily be Known.

This study covers only one drug class of anticancer and will be extended to cover

more drug classes in the future.

Implications

Valuation of drug specific to drug class can be possible and the royalty rate is in direct

proportion to licensee revenue and attrition Rate and is in inverse proportion to

Market Size, TCT median value and CAGR in specific drug class.
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Topics for further research

Further in-depth research is necessary for the following topics in the future.

1. The relationship for other drug classes and royalty related data regression analysis

using multiple input descriptors.

2. The comparison of the estimation results between by using the prediction formula

derived regression analysis Vs. by using traditional valuation methods like e-NPV or

Real Options.
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